Un mapa de Karnaugh (también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como K-Mapa o KV-Mapa) es un diagrama utilizado para la simplificación de funciones algebraicas booleanas. El mapa de Karnaugh fue inventado en 1950 por Maurice Karnaugh, un físico y matemático de los laboratorios Bell.
Externamente, un mapa de Karnaugh consiste de una serie de cuadrados, cada uno de los cuales representa una línea de la tabla de verdad. Puesto que la tabla de verdad de una función de N variables posee 2N filas, el mapa K correspondiente debe poseer también 2N cuadrados. Cada cuadrado alberga un 0 ó un 1, dependiendo del valor que toma la función en cada fila. Las tablas de Karnaugh se pueden utilizar para funciones de hasta 6 variables.
a)- Minitérmino: Es cada una de las combinaciones posibles entre todas las variables disponibles, por ejemplo con 2 variables obtienes 4 minitérminos; con 3 obtienes 8; con 4, 16 etc., como te darás cuenta se puede encontrar la cantidad de minitérminos haciendo 2n donde n es el número de variables disponibles.
b)- Numeración de un minitérmino: Cada minitérmino es numerado en decimal de acuerdo a la combinación de las variables y su equivalente en binario así...
Bien... El Mapa de Karnaugh representa la misma tabla de verdad a través de una matriz, en la cual, en la primera fila y la primera columna, se indican las posibles combinaciones de las variables. Aquí tienes tres mapas para 2, 3 y 4 variables...
Analicemos el mapa para cuatro variables, las dos primeras columnas (columnas adyacentes) difieren sólo en la variable d, y c permanece sin cambio, en la segunda y tercera columna (columnas adyacentes) cambia c, y d permanece sin cambio, ocurre lo mismo en las filas. En general se dice que...
Ejemplo 1: Simplifica la función de dos variables f = a'b + ab' + ab
Lo primero que debo de hacer es representarlo en un mapa de dos variables. Se representa como una tabla. Para llenar la tabla, pongo un uno donde se intersecte el valor de la función. Por ejemplo, para el primer término de la función f = a'b + ab' + ab, se ha marcado en rojo donde se puso el 1 en la tabla.
Una vez hecho el mapa, debemos marcar las regiones contiguas que manejen 1s. Aquí en el dibujo vemos cómo se marcan dos regiones. Estas regiones son las simplificaciones. Como la región azul involucra solamente a la b, eso representa. La región verde, por su parte, involucra solamente a la a. Para cada región, debemos checar qué variables involucra. En el caso de la región azul, cubre a la b, pero con respecto a la variable a maneja tanto a como a', y por eso se descarta la a. Una vez definidas las regiones, se escribe la función simplificada f= b + a.
Ejemplo 2: Simplifica la función de tres variables f = a'b + ab'c + c'
Lo primero que debo de hacer es representarlo en un mapa de tres variables. Se representa como se muestra en la tabla. Para llenar la tabla, pongo un uno donde se intersecte el valor de la función. Por ejemplo, para los términos de la función f = a'b +ab'c + c', se ha marcado donde se puso el 1 en la tabla.
Ahora debemos buscar las regiones que nos indiquen la función simplificada. Lo primero que debemos observar es que las regiones pueden agruparse de los extremos del mapa, como la región azul. Esta región representa a c'. Ahora, vemos que queda un bit en a'bc, pero siempre conviene agruparlo lo más posible, en regiones cuyas celdas sean múltiplos de 2 (1, 2, 4, 8...) En este caso, la agrupamos con el 1 contiguo, para que la región quede como a'b.
La región verde se agrupa para formar ab'. Así, la función resultante sería f = a'b + ab' + c.
No hay comentarios:
Publicar un comentario